
ConfidentialPA110/23/20141

Tips for Writing
Good Tests

for Linux

Tim Bird

Fuego Test System Maintainer

Sr. Staff Software Engineer, Sony Electronics
1

ConfidentialPA110/23/20142

Outline

• Test ecosystem problems

• Test frameworks
• LTP

• kselftest

• Fuego

• Attributes of a good test

• Tips

• Resources

ConfidentialPA110/23/20143

Test ecosystem problems

• Not enough test sharing
• Lots of test frameworks

• Some tests are available
• LTP and lots of individual and benchmarks exist

• Many tests are not shared!

• Why aren’t more aspects of QA cycle
shared?
• Many in-house tests use custom test rigs or

specialized hardware

• Interface between DUT, test system and test is
not standardized

ConfidentialPA110/23/20144

Existing Test problems

• Problems with existing Open Source tests
• Learning curve

• False positives

• Useless tests

ConfidentialPA110/23/20145

Learning curve

• For any particular test, the QA engineer
must learn:
• How to build, install and run the test

• How to customize the test for the local
environment

• How to interpret results

• Developers need to:
• Reproduce results

• Have 3rd parties reproduce results

• Report issues upstream

ConfidentialPA110/23/20146

False positives

• Bad or missing dependencies
• LTP tests often don’t do a good job of checking

dependencies

• Some tests are too sensitive to test
environment conditions
• Extra load on the machine will cause

benchmarks to behave wildly

• Bad network, bad flash, server unavailability
cause false positives

ConfidentialPA110/23/20147

Useless tests

• Tests an attribute so basic, the test never fails

• Tests conditions that are unrelated to required
behavior

• Tests conditions that are already exercised
just by booting the DUT and executing the test
framework
• ex: open syscall

• Tests something rare and unlikely
• May cost more to execute than it’s worth to find a

bug

ConfidentialPA110/23/20148

Solutions

• Need to have tests that are:
• Well-documented

• Easier to automate
• Handle building and installation automatically

• More robust
• Handle dependencies, skip problematic tests

• Sharable with others
• Work in many scenarios

• Work on many devices

• Easily customized

ConfidentialPA110/23/20149

Test Frameworks

• LTP
• Linux Test Project

• kselftest
• Kernel selftest (unit tests)

• Fuego
• AGL/LTS test system

• Like a test package system

ConfidentialPA110/23/201410

LTP (Linux Test Project)

• Is a big “umbrella” project, with lots of tests

• Provides helper functions for setup, results
reporting, cleanup

ConfidentialPA110/23/201411

LTP introduction

• Mostly C and posix shell tests of kernel and
core system functionality
• No benchmarks

• Has lots of tests (>3000) in 3 broad
categories
• functional, posix conformance, realtime

• Hard to assess coverage
• New syscalls and behaviors show up every release

• It’s hard to keep up

• Heavy historical focus on testing error
conditions

ConfidentialPA110/23/201412

Included test harness

• Tests can be run individually, or in groups,
or stress configurations

• ltp-pan – run a named collection of tests
• Optionally with multiple simultaneous instances

• Optionally repeatedly
• for a count, or

• for a period of time

• Can customize command-line parameters

• ltprun – runs groups of tests
• Many groups defined:

• syscalls, input, fs, net, math, numa, etc.

• Over 80 groups of tests

ConfidentialPA110/23/201413

LTP output

• Individual test results schema:
• TPASS – test passed (result was as expected or within tolerance)

• TFAIL – test failed (result was unexpected or out-of-tolerance)

• TBROK – test case broken (missing precondition, such as resource
unavailable)

• TCONF – test configuration not satisfied, such as machine type or kernel
version.

• TINFO – provides additional information about a test result

• TWARN – provides additional information about a test condition (indicating
undesirable situation), but that does not affect the test result

• Additional meta-data from harness
• command line, duration, system times, exit

code, etc.

ConfidentialPA110/23/201414

LTP example test

• umount02

• Sample output:

tst_device.c:213: INFO: Using test device LTP_DEV='/dev/loop0'
tst_test.c:792: INFO: Timeout per run is 0h 05m 00s
tst_mkfs.c:75: INFO: Formatting /dev/loop0 with ext2 opts='' extra opts=''
mke2fs 1.42.13 (17-May-2015)
umount02.c:72: PASS: umount() fails as expected: Already mounted/busy: EBUSY
umount02.c:72: PASS: umount() fails as expected: Invalid address: EFAULT
umount02.c:72: PASS: umount() fails as expected: Directory not found: ENOENT
umount02.c:72: PASS: umount() fails as expected: Invalid device: EINVAL
umount02.c:72: PASS: umount() fails as expected: Pathname too long: ENAMETOOLONG

Summary:
passed 5
failed 0
skipped 0
warnings 0

ConfidentialPA110/23/201415

Example setup & cleanup

static void setup(void)

{

memset(long_path, 'a', PATH_MAX + 1);

SAFE_MKFS(tst_device->dev, tst_device->fs_type, NULL, NULL);

SAFE_MKDIR(MNTPOINT, 0775);

SAFE_MOUNT(tst_device->dev, MNTPOINT, tst_device->fs_type, 0, NULL);

mount_flag = 1;

fd = SAFE_CREAT(MNTPOINT "/file", 0777);

}

static void cleanup(void)

{

if (fd > 0 && close(fd))

tst_res(TWARN | TERRNO, "Failed to close file");

if (mount_flag)

tst_umount(MNTPOINT);

}

ConfidentialPA110/23/201416

Example setup & cleanup

static void setup(void)

{

memset(long_path, 'a', PATH_MAX + 1);

SAFE_MKFS(tst_device->dev, tst_device->fs_type, NULL, NULL);

SAFE_MKDIR(MNTPOINT, 0775);

SAFE_MOUNT(tst_device->dev, MNTPOINT, tst_device->fs_type, 0, NULL);

mount_flag = 1;

fd = SAFE_CREAT(MNTPOINT "/file", 0777);

}

static void cleanup(void)

{

if (fd > 0 && close(fd))

tst_res(TWARN | TERRNO, "Failed to close file");

if (mount_flag)

tst_umount(MNTPOINT);

}

ConfidentialPA110/23/201417

setup and cleanup

• Use SAFE_ macros for automatic error
handling

• Clean up in opposite order of resource
allocation

• Use tst_* helper functions
• There are many, to handle common operations

ConfidentialPA110/23/201418

Example test

static struct tcase {

const char *err_desc;

const char *mntpoint;

int exp_errno;

} tcases[] = {

{"Already mounted/busy", MNTPOINT, EBUSY},

{"Invalid address", NULL, EFAULT},

{"Directory not found", "nonexistent", ENOENT},

{"Invalid device", "./", EINVAL},

{"Pathname too long", long_path,

ENAMETOOLONG}

};

static void verify_umount(unsigned int n)

{

struct tcase *tc = &tcases[n];

TEST(umount(tc->mntpoint));

if (TEST_RETURN != -1) {

tst_res(TFAIL,

"umount() succeeds unexpectedly");

return;

}

if (tc->exp_errno != TEST_ERRNO) {

tst_res(TFAIL | TTERRNO,

"umount() should fail with %s",

tst_strerrno(tc->exp_errno));

return;

}

tst_res(TPASS | TTERRNO,

"umount() fails as expected: %s",

tc->err_desc);

}

ConfidentialPA110/23/201419

test details

• verify_umount is the main ‘test’ routine
• In this case, it is called with the sub-testcase

number

• tst_res() is used to report results
• Should be called once per sub-testcase (with

actual result)

• Can be called multiple times with INFO

ConfidentialPA110/23/201420

Example struct tst_test

static struct tst_test test = {

.tid = "umount02",

.tcnt = ARRAY_SIZE(tcases),

.needs_root = 1,

.needs_tmpdir = 1,

.needs_device = 1,

.setup = setup,

.cleanup = cleanup,

.test = verify_umount,

};

ConfidentialPA110/23/201421

struct tst_test

• Define a set of test attributes
• Including function pointers for setup, cleanup

and test

• .tid defines the test identifier

• Can specify needed resources, which are
automatically created and removed

• There is no “main” function
• actual ‘main’ calls the routines specified in the

tst_test struct.

ConfidentialPA110/23/201422

LTP Resources

• https://github.com/Linux-test-project/ltp/wiki
• https://github.com/linux-test-project/ltp/wiki/C-

Test-Case-Tutorial

• Intro article by Cyril Hrubis (project
maintainer) on LWN.net
• https://lwn.net/Articles/625969/

• Lightning talk – Introduction and status at
Fosdem 2018
• https://fosdem.org/2018/schedule/event/linux_te

st_project/

ConfidentialPA110/23/201423

LTP conclusion

• Has a lot of support for writing a good test

• LTP needs more tests, to keep it relevant

• Please add stuff to it, and fix anything you
find that is broken

• Some project ideas:
• Convert old tests to new API

• Document specific test cases
• Can do this in Fuego – more on this later

• Clean up and add to developer docs

• New tests (Linux commands)

ConfidentialPA110/23/201424

kselftest Introduction

• Is the kernel unit test framework
• Is in the kernel source tree

• tools/testing/selftest

• Supports local execution, or remote
installation
• Can build tarfile for installation on external DUT
• Can cross-compile (just like kernel)

• Can select individual test sets to build or run
• make TARGETS=“size timers” kselftest

• About 350 source files in 52 directories
• Where kernel devs put their own unit tests

ConfidentialPA110/23/201425

kselftest

• Is super-convenient if you are a kernel
developer

• Does not provide a harness or helpers for
setup, cleanup, common operations

• Started as ad-hoc collection of kernel sub-
system unit tests
• It’s still pretty ad-hoc...

• Is migrating to common output format

ConfidentialPA110/23/201426

Example kselftest test

• Sorry....

• Each test is different

• There is no “typical” example, due to lack of
API

• Each one written from scratch

ConfidentialPA110/23/201427

Output format

• TAP is preferred output format
• Test Anything Protocol (version 13)

• See https://testanything.org/

• Example:

• Use ksft_* output routines, to get TAP
automatically (see kselftest.h)
• ksft_test_result_pass, ksft_test_result_fail, etc.

1..4
ok 1 - Input file opened
not ok 2 - First line of the input valid
ok 3 - Read the rest of the file
not ok 4 - Summarized correctly # TODO Not written yet

ConfidentialPA110/23/201428

kselftest resources

• https://www.kernel.org/doc/html/latest/dev-
tools/ksefltest.html

from Documentation/dev-tools/kselftest.rst

• https://blogs.s-osg.org/introduction-testing-
linux-kernel-kselftest/

ConfidentialPA110/23/201429

kselftest tips

• Don’t assume you’re building or running on
the latest kernel version
• Don’t rely on features of current kernel version

• Allow developers of earlier kernels to run latest
kselftest

• Check for dependencies at runtime and
notify user if they’re not fulfilled
• Check for root user

• Check kernel configuration

ConfidentialPA110/23/201430

Fuego Introduction

• Fuego =
• host test distribution +

• a bunch of tests + test wrappers +

• Jenkins interface

• ALL inside a docker container

• Is intrinsically host/target

• Fuego is like the Debian of QA software
• A distribution of tests, each one of which can be

used individually (and is maintained individually)

• About 150 test suites and benchmarks so far

ConfidentialPA110/23/201431

Fuego test

• Is more like a packaging system than an
individual test

• fuego_test.sh is a wrapper for:
• build (cross-compile)
• deploy (put on target)
• run
• collect results

• Can also provide a parser to:
• Collect individual test case data
• Create standardized output (run.json file)
• Apply pass criteria

ConfidentialPA110/23/201432

Fuego Architecture

Host machine:

Docker container:

Target board:

Test program
(deployed)

Web
control
interfaceToolchains

Config
Builds
Logs

Volume
Mount

Test source
Fuego Scripts
Build system

Jenkins

ConfidentialPA110/23/201433

Fuego Test

• A Fuego test is usually a wrapper around an
existing test:
• Example existing tests: iozone, LTP, bonnie,

iperf, Dhrystone, cyclictest

• Can also write a new individual test
• For simple tests

• Shell commands inside a Fuego test_run
routine, or simple standalone script

• Consists of: fuego_test.sh and parser.py

• Also: spec.json, criteria.json, and other files

ConfidentialPA110/23/201434

Fuego test example

tarball=hello-test-1.1.tgz

function test_pre_check {
assert_define FUNCTIONAL_HELLO_WORLD_ARG

}

function test_build {
make

}

function test_deploy {
put hello $BOARD_TESTDIR/fuego.$TESTDIR/

}

function test_run {
report "cd $BOARD_TESTDIR/fuego.$TESTDIR; \

./hello $FUNCTIONAL_HELLO_WORLD_ARG"
}

function test_processing {
log_compare "$TESTDIR" "1" "SUCCESS" "p"

}

ConfidentialPA110/23/201435

Fuego output

• Every test produces run.json file
• test meta-data, logs, results in JSON format

• Results schema:
• PASS

• FAIL

• ERROR

• SKIP

ConfidentialPA110/23/201436

Fuego advocacy

• Don’t write your DUT-based test in Fuego
• I don’t care if you don’t write a Fuego test

• I’d rather you didn’t

• Write something for LTP or kselftest, and the
whole industry benefits

• If writing a multi-node test, consider Fuego
• Fuego supports host-client operations

• serial, network

• We need standard interfaces for other hardware
control

• Probably Board Control summit at Plumbers

ConfidentialPA110/23/201437

Fuego Resources

• Fuego web server:
• http://fuegotest.org/

• wiki: http://fuegotest.org/wiki

• Mailing list:
• https://lists.linuxfoundation.org/mailman/listinfo/fuego

• Repositories:
• https://bitbucket.org/tbird20d/fuego

• https://bitbucket.org/tbird20d/fuego-core

ConfidentialPA110/23/201438

Tim’s scorecard

Attribute LTP kselftest Fuego

Well-documented APIs - some

tests - no

no APIs - yes

tests - in-progress

Handles builds and

installs

yes yes yes+

Test scheduling no no yes (via jenkins)

Helper routines

(setup, cleanup, etc.)

lots few some

Handles dependencies some no lots

Customizable some no yes

Consistent output yes* (in

different groups)

no* (TAP started) yes

Test ids numbers only numbers only some strings

Visualization no no yes

ConfidentialPA110/23/201439

Choosing a framework

• For white-box testing of the Linux kernel,
use kselftest

• For black-box testing, use LTP
• Especially for kernel behavior testing

• For benchmarks, extend or customize one of
the current tools
• xfstests, mmtests, iperf, etc.

• For dual-machine tests, use Fuego
• Intrinsically supports host/target test operation

• Needs more support for API for hardware
connections (e.g. bus control, audio, video)

ConfidentialPA110/23/201440

Tips for good tests

• Produce good output

• Make tests universal

• Avoid false positives

• Test something useful

ConfidentialPA110/23/201441

Test output

• 6 elements of good test output:
• Testcase identifier (tguid)

• Description

• Result (pass/fail)

• Behavior
• Expected behavior

• Seen behavior

• Interpretation

• Distinguish results from errors
• Errors are problems that interfere with the test

ConfidentialPA110/23/201442

Tips for test output

• Make results machine parsable, but human
readable
• Use unique strings for results output (e.g. TPASS)

• Use common results schema:
• Use the same strings to indicate:

• pass, fail, error, skip

• Use unique and persistent test case identifiers

• Use line-based output
• Output should be greppable.

• Results exposition should follow the results or
preced the results, but NOT BOTH
• This makes the parser much easier.

ConfidentialPA110/23/201443

Test case identifiers

• Don’t just use numbers
• TGUID = test globally unique identifier

• LTP.syscall.umount02.03
• LTP.syscall.umount02.try_nonexistent_dir

• Make the identifier persistent
• That is, id should be the same run-to-run
• BAD: list of connections is read from dynamic

source, and numbers are used to indicate the
network test to each one:
• ‘net_test 1’ (= test to google.com)
• ‘net_test 2’ (= test to amazon.com)

• Better:
• ‘net_test connect to google’
• ‘net_test connect to amazon’

ConfidentialPA110/23/201444

Make tests universal

• Limit the languages used:
• Native program or POSIX shell

• Don’t assume DUT capabilities
• Check for dependencies

• Use minimal resources

ConfidentialPA110/23/201445

Limited Languages

• Compiled language
• Usually C (most common denominator)
• Provide source, not binaries
• Make source cross-compilable

• Don’t assume architecture of DUT

• Statically link, if possible
• Avoid library dependencies

• POSIX shell
• POSIX features only (no, not bash)
• Use “checkbashisms” tool to find things that are

unsupported by POSIX shell standard
• Then get rid of them

• If another interpreted language, provide virtual
machine with test

ConfidentialPA110/23/201446

Use minimal resources

• Avoid dependencies, where possible
• C programs:

• Limit usage of library calls: POSIX subset
• Depends on the test, of course
• OSkit defines a good minimal C library subset
• http://www.cs.utah.edu/flux/oskit/html/oskit-

wwwch14.html
• Ignore the weird parts of memory allocation (14.5)

• Assume minimal OS features (reduced syscall set)
• Shell scripts:

• Limit usage of external commands
• Recommended minimum list:

• cat, df, find, grep, free, head, mkdir, mount, ps, reboot, rm,
rmdir, route, sync, tee, test, touch, true, umount, uname,
uptime, xargs

• Limit use of /proc and /sys

ConfidentialPA110/23/201447

Detect dependencies

• When you have dependencies (and you
will)...

• Detect dependencies before test
• Use dependency system

• Probe system and abort early, with message

• Missing dependency = skip, not fail
• Let user specify if a testcase should be run

• ie Support skiplists, or auto-handle skips

ConfidentialPA110/23/201448

Don’t assume DUT capabilities

• Don’t assume capacity or speed of DUT
• Don’t hardcode loops or sizes

• Automatically detect loops or sizes, if needed
• Probe for capabilities (disk size, mem size, CPU

speed)

• Consider using a pre-test run (ie calibration run), to
adjust loops or sizes

• As a last resort, use test parameters to adjust
loops or sizes
• NOTE: test parameters are a royal pain to maintain.

Please document not just their presence, but when
and why they would be used

ConfidentialPA110/23/201449

Make tests reusable

• Make tests usable in a wide variety of
circumstances
• Parameterize tests

• Allow results criteria external to test
• Required for benchmarks, to avoid dependency on

the speed, latency, etc. of particular machine

• Most benchmarks just produce results, but don’t
evaluate them

• Fuego allows specifying pass criteria for
Benchmarks (criteria.json file)

ConfidentialPA110/23/201450

Parameterize tests

• Parameters allow for adapting your test to
circumstances
• Should not be used as a way of avoiding writing

parts of test that are difficult

• Allows a single test to be used in different
circumstances

• Parameters must be well-documented
• This is often a big deficiency

• Use command line arguments for
parameters
• Don’t use shell environment variables

ConfidentialPA110/23/201451

Documenting Tests

• What does it test?

• How does it test it?

• What are the expected results?

• What to do if bad results are seen?
• What config items can be changed?

• What /proc or /sys knobs can be adjusted?

• What hardware can be changed? (e.g. mmc,
antenna, etc.)

• Where to report failures?

• What do parameters adjust?

ConfidentialPA110/23/201452

Test automation

• Things that make a test automatable:
• Uses standard build tropes (configure, make)

• Is self-contained

• Creates needed resources, cleans up after self

• Has easily parsed output for results
determination
• Has consistent output patterns

• Is deterministic

• Does not require human setup or input

ConfidentialPA110/23/201453

Test usability

• Things that make a test usable:
• Indicates what it is testing

• Gives additional information when test fails

ConfidentialPA110/23/201454

Test robustness

• Check for dependencies

• Create needed resources at test time
• But this can require time

• Tune for DUT capabilities
• Capacity, speed, RT latencies

• Handle errors gracefully

• Clean up after test

ConfidentialPA110/23/201455

Test something useful

• Test behavior that your program relies on
• Stuff that would break your app if it changed

• Don’t just test everything in the spec
• Don’t test existing behavior if your code doesn’t

rely on it
• This just codifies that behavior

• Read your code, not the specs or the system
code, to produce a test

• Make tests for things that broke and were fixed
• Create regression tests
• If it broke before, it can break again

ConfidentialPA110/23/201456

Miscellaneous

• Use clitest for shell test automation
• Provide a script with command and expected

output

• clitest executes command and compares results

• See https://github.com/aureliojargas/clitest

ConfidentialPA110/23/201457

My advice and preference

• Write new functional tests in LTP
• Has a good test library, build system is free

• Has consistent output schema
• Many harnesses already parse LTP output

• For existing test, publish it and add Fuego
test for your test
• Fuego can automate it, document it, make the

results sharable, and provide visualization for it

• Would like to see kselftest use the LTP test
library

• Need board automation standards!

ConfidentialPA110/23/201458 ConfidentialPA110/23/201458

Go forth and test...

Share your tests!

ConfidentialPA110/23/201459

Fuego

